Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages.

نویسندگان

  • Fatiha Tabet
  • Gilles Lambert
  • Luisa F Cuesta Torres
  • Liming Hou
  • Irene Sotirchos
  • Rhian M Touyz
  • Alicia J Jenkins
  • Philip J Barter
  • Kerry-Anne Rye
چکیده

OBJECTIVE The goal of this study was to investigate the mechanisms by which apolipoprotein (apo) A-I, in the lipid-free form or as a constituent of discoidal reconstituted high-density lipoproteins ([A-I]rHDL), inhibits high-glucose-induced redox signaling in human monocyte-derived macrophages (HMDM). METHODS AND RESULTS HMDM were incubated under normal (5.8 mmol/L) or high-glucose (25 mmol/L) conditions with native high-density lipoproteins (HDL) lipid-free apoA-I from normal subjects and from subjects with type 2 diabetes (T2D) or (A-I)rHDL. Superoxide (O2-) production was measured using dihydroethidium fluorescence. NADPH oxidase activity was assessed using lucigenin-derived chemiluminescence and a cyotochrome c assay. p47phox translocation to the plasma membrane, Nox2, superoxide dismutase 1 (SOD1), and SOD2 mRNA and protein levels were determined by real-time polymerase chain reaction and Western blotting. Native HDL induced a time-dependent inhibition of O2- generation in HMDM incubated with 25 mmol/L glucose. Lipid-free apoA-I and (A-I)rHDL increased SOD1 and SOD2 levels and attenuated 25 mmol/L glucose-mediated increases in cellular O2-, NADPH oxidase activity, p47 translocation, and Nox2 expression. Lipid-free apoA-I mediated its effects on Nox2, SOD1, and SOD2 via ABCA1. (A-I)rHDL-mediated effects were via ABCG1 and scavenger receptor BI. Lipid-free apoA-I from subjects with T2D inhibited reactive oxygen species generation less efficiently than normal apoA-I. CONCLUSIONS Native HDL, lipid-free apoA-I and (A-I)rHDL inhibit high-glucose-induced redox signaling in HMDM. The antioxidant properties of apoA-I are attenuated in T2D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells.

Previous studies have shown that both high density lipoproteins (HDL) isolated from human plasma and reconstituted HDL (rHDL) are effective inhibitors of adhesion molecule expression in human endothelial cells. In this study rHDL have been used to investigate whether HDL particle shape, size, apolipoprotein composition or lipid composition are important determinants of the ability of HDL to inh...

متن کامل

Myeloperoxidase-derived oxidants modify apolipoprotein A-I and generate dysfunctional high-density lipoproteins: comparison of hypothiocyanous acid (HOSCN) with hypochlorous acid (HOCl).

Oxidative modification of HDLs (high-density lipoproteins) by MPO (myeloperoxidase) compromises its anti-atherogenic properties, which may contribute to the development of atherosclerosis. Although it has been established that HOCl (hypochlorous acid) produced by MPO targets apoA-I (apolipoprotein A-I), the major apolipoprotein of HDLs, the role of the other major oxidant generated by MPO, HOSC...

متن کامل

Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits.

OBJECTIVE Apolipoprotein (apo)A-I exists in 3 forms in plasma: as lipid-free apoA-I, as a component of pre-beta-migrating discoidal high density lipoproteins (HDLs), and as a component of alpha-migrating spherical HDLs. This study investigates (1) the in vivo metabolism of apoA-I in each of these forms and (2) the effects of hepatic lipase (HL) on apoA-I metabolism. METHODS AND RESULTS Wild-t...

متن کامل

Oxidation of methionine residues affects the structure and stability of apolipoprotein A-I in reconstituted high density lipoprotein particles.

To determine the effect of oxidative damage to lipid-bound apolipoprotein A-I (apo A-I) on its structure and stability that might be related to previously observed functional disorders of oxidized apo A-I in high density lipoproteins (HDL), we prepared homogeneous reconstituted HDL (rHDL) particles containing unoxidized apo A-I and its commonly occurring oxidized form (Met-112, 148 bis-sulfoxid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2011